Financial volatility trading using recurrent neural networks
نویسندگان
چکیده
We simulate daily trading of straddles on financial indexes. The straddles are traded based on predictions of daily volatility differences in the indexes. The main predictive models studied are recurrent neural nets (RNN). Such applications have often been studied in isolation. However, due to the special character of daily financial time-series, it is difficult to make full use of RNN representational power. Recurrent networks either tend to overestimate noisy data, or behave like finite-memory sources with shallow memory; they hardly beat classical fixed-order Markov models. To overcome data nonstationarity, we use a special technique that combines sophisticated models fitted on a larger data set, with a fixed set of simple-minded symbolic predictors using only recent inputs. Finally, we compare our predictors with the GARCH family of econometric models designed to capture time-dependent volatility structure in financial returns. GARCH models have been used to trade volatility. Experimental results show that while GARCH models cannot generate any significantly positive profit, by careful use of recurrent networks or Markov models, the market makers can generate a statistically significant excess profit, but then there is no reason to prefer RNN over much more simple and straightforward Markov models. We argue that any report containing RNN results on financial tasks should be accompanied by results achieved by simple finite-memory sources combined with simple techniques to fight nonstationarity in the data.
منابع مشابه
Mining associations between trading volume volatilities and financial information volumes based on GARCH model and neural networks
There has been an increasing attention on the influences online financial information has on the financial markets. In the meanwhile, the volatility of trading volumes, just as the volatility of stock returns, has an inseparable association with financial risks. It has been considered that there might exist some direct or indirect correlations between online financial information volumes and fi...
متن کاملAdaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model
The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which ...
متن کاملAssociating Financial Trading Volume Volatility and Information Volume based on Neural Network and Support Vector Machine
Within the stock markets, the trading volumes and the asset prices are considered to be highly changeable and unpredictable. However, effective forecasting of the way how they will change guarantees constructive advice for financial practitioners. There are various factors that may have an impact on the movements, one of which is the financial information. On the other hand, financial volatilit...
متن کاملStock Volatility Prediction Using Recurrent Neural Networks with Sentiment Analysis
In this paper, we propose a model to analyze sentiment of online stock forum and use the information to predict the stock volatility in the Chinese market. We have labeled the sentiment of the online financial posts and make the dataset public available for research. By generating a sentimental dictionary based on financial terms, we develop a model to compute the sentimental score of each onli...
متن کاملTemporal Pattern Recognition in Noisy Non-stationary Time Series Based on Quantization into Symbolic Streams: Lessons Learned from Financial Volatility Trading
In this paper we investigate the potential of the analysis of noisy non-stationary time series by quantizing it into streams of discrete symbols and applying finitememory symbolic predictors. The main argument is that careful quantization can reduce the noise in the time series to make model estimation more amenable given limited numbers of samples that can be drawn due to the non-stationarity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2001